Boundary conformal field theory approach to the two-dimensional critical Ising model with a defect line

Abstract
We study the critical two-dimensional Ising model with a defect line (altered bond strength along a line) in the continuum limit. By folding the system at the defect line, the problem is mapped to a special case of the critical Ashkin-Teller model, the continuum limit of which is the $Z_2$ orbifold of the free boson, with a boundary. Possible boundary states on the $Z_2$ orbifold theory are explored, and a special case is applied to the Ising defect problem. We find the complete spectrum of boundary operators, exact two-point correlation functions and the universal term in the free energy of the defect line for arbitrary strength of the defect. We also find a new universality class of defect lines. It is conjectured that we have found all the possible universality classes of defect lines in the Ising model. Relative stabilities among the defect universality classes are discussed.

This publication has 0 references indexed in Scilit: