Abstract
In this paper, the use of an efficient sparse minor expansion method to directly compute the subresultants needed for the greatest common denominator (GCD) of two polynomials is described. The sparse minor expansion method (applied either to Sylvester's or Bezout's matrix) naturally computes the coefficients of the subresultants in the order corresponding to a polynomial remainder sequence (PRS), avoiding wasteful recomputation as much as possible. It is suggested that this is an efficient method to compute the resultant and GCD of sparse polynomials.

This publication has 10 references indexed in Scilit: