Subunit H of the V-ATPase Involved in Endocytosis Shows Homology to β-Adaptins

Abstract
The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that facilitates the acidification of intracellular compartments in eukaryotic cells and plays an important role in receptor-mediated endocytosis, intracellular trafficking processes, and protein degradation. In this study we show that the C-terminal fragment of 350 residues of the regulatory subunit H (V1H) of the V-ATPase shares structural and functional homologies with the β-chains of adaptor protein complexes. Moreover, the fragment is similar to a region in the β-subunit of COPI coatomer complexes, which suggests the existence of a shared domain in these three different families of proteins. For β-adaptins, this fragment binds to cytoplasmic di-leucine–based sorting motifs such as in HIV-1 Nef that mediate endocytic trafficking. Expression of this fragment in cells blocks the internalization of transmembrane proteins, which depend on di-leucine–based motifs, whereas mutation of the consensus sequence GEY only partly diminishes the recognition of the sorting motif. Based on recent structural analysis, our results suggest that the di-leucine-binding domain consists of a HEAT or ARM repeat protein fold.