Abstract
Simultaneous intracellular and sucrose-gap recordings showed, in contrast to previous findings, that the electrical parameters of giant axons were similar to intact and desheathed connectives bathed with the ‘extracellular Ringer’ of Yamasaki & Narahashi. This implies that the extra-axonal sodium concentration, in situ, is likely to be lower than had been previously supposed. Axonal responses showed that, despite the high blood concentration of 24–2 mM-K+ measured by flame photometry, the effective concentration in the blood was 10–15 mM-K+ which corresponds to the measurements made with potassium-selective electrodes. The activity of the blood potassium ions caused a marked reduction in the amplitude of the action potentials following surgical desheathing or disruption of the blood-brain barrier with hypertonic urea. It is suggested that a regulatory mechanism exists in the central nervous system which counteracts the effects of the high blood potassium level.