Stimulation of protein phosphatases as a mechanism of the muscarinic-receptor-mediated inhibition of cardiac L-type Ca2+ channels

Abstract
Acetylcholine decreases currents through cardiac L-type Ca2+ channels after stimulation with agents which elevate levels of cyclic adenosine monophosphate, such as isoproterenol, but there is still a controversy over the mechnisms of this muscarinic effect. We tested the hypothesis of whether, after isoproterenol stimulation, protein phosphatases are activated by acetylcholine. Whole-cell currents were recorded from guinea-pig ventricular myocytes. The effect of 10−5 M acetylcholine on currents induced by 10−8 M isoproterenol was studied in the absence or presence of protein phosphatase inhibitors. Three agents reduced the acetylcholine response: okadaic acid (3 or 9 · 10−6 M) and cantharidin (3 · 10−6 M) added to the pipette solution, and bath-applied fluoride (3 mM). In contrast, pipette application of other phosphatase inhibitors, namely the inhibitor PPI2 (1000 U/ml), ciclosporin (10−5 M), or calyculin A (10−6 M) did not significantly diminish the acetylcholine effect. Interestingly, there was no correlation between the effects of the compounds on basal Ca2+ current and their interference with the muscarinic response. An activation of type 2A phosphatases by acetylcholine would explain these findings. Indeed, okadaic acid is 3 orders of magnitude more potent in vitro in its inhibition of this isoform (purified from cardiac myocytes) than is calyculin A, while type-1 phosphatases are inhibited equally. The data support the attractive possibility that stimulation of protein phosphatases is part of the signal transduction cascade of Ca2+ channel inhibition by acetyl-choline.