Caspase 8 mediated apoptotic cell death induced by β‐sheet forming polyalanine peptides

Abstract
Expansion of a polyalanine stretch from 10 to 12-17 residues in the N-terminus of the protein PABP2 has been implicated in the genetically acquired disease oculopharyngeal muscular dystrophy, characterized by nuclear protein deposits. Here we report a correlation between the structural properties and cell toxicity of two peptides mimicking the N-terminal domain of PABP2: one containing seven and the other 11 uninterrupted alanine residues. Consistent with earlier observations, the longer peptide (11-ala) was found to adopt beta-sheet structure while the shorter one (7-ala) formed alpha-helix over a wide range of concentrations ( approximately 20-500 microM). We observed that treatment with 11-ala resulted in significantly enhanced death of Chinese hamster V79 cells, compared to the effect of treatment with 7-ala, via the cytochrome c mediated apoptotic pathway. Increases in caspase 8 and caspase 3 activity were also observed in human cells (K562) treated with 11-ala. These results indicate that the toxicity of pathogenic peptides is directly linked to their beta-sheet structure and also support recent observations that small oligomeric species of peptides and proteins are the key toxic elements in causing protein aggregation diseases.