Algorithms for Power Converter Design Optimization

Abstract
A practical optimization approach for power converters is established which allows conception of a design to meet all powercircuit performance requirements and concurrently to optimize a defined quantity such as weight or losses. In addition to facilitating a cost effective design, the computer-aided approach provides a means to readily assess a) the weight-efficiency tradeoff, b) impacts of converter requirements and component characteristics on a given design, and c) optimum power-system configurations. The following two popular algorithms for nonlinearly constrained optimization are utilized to design the power converter: 1) the sequential unconstrained minimization technique, SUMT Version 4; 2) the ALAG penalty function technique, ALAG5. These algorithms are compared, and suggestions are made for improving the efficiency of the optimization algorithms for power converter design.