High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination

Abstract
The performance of solid-state dye-sensitized solar cells based on spiro-MeOTAD was considerably improved by controlling charge recombination across the interface of the heterojunction. This was achieved by blending the hole conductor matrix with a combination of 4-tert-butylpyridine (tBP) and Li[CF3SO2]2N. Open circuit voltages Uoc over 900 mV and short circuit currents Isc up to 5.1 mA were obtained, yielding an overall efficiency of 2.56% at AM1.5 illumination. These values have been fully confirmed at the National Renewable Energy Laboratories for a device with an active area of 1.07 cm2, signifying a dramatic improvement compared to previously reported values for a similar device.