Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum

Abstract
The role of nickel in CO oxidation and electron flow was investigated in carbon monoxide dehydrogenase from Rhodospirillum rubrum. The Fe-S centers of oxidized, nickel-containing (holo) CO dehydrogenase were completely reduced within 1 min of exposure to CO. The Fe-S centers of oxidized, nickel-deficient (apo) CO dehydrogenase were not reduced during a 35-min incubation in the presence of CO. Apo-CO dehydrogenase Fe-S centers were reduced by dithionite. The Fe-S centers of cyanide-inhibited, holo-CO dehydrogenase were not reduced in the presence of CO but were reduced by dithionite. Treatment of apo-CO dehydrogeanse with cobalt(II), zinc(II), and iron(II) resulted in association of these metal ions (0.70, 1.2, and 0.86 mol of M2+mol, respectively) with the protein but no increase in specific activity. Purified holo-CO dehydrogenase contained 1.1 mol of nickel/mol of protein and could not be further activated upon addition of NiCl2, suggesting the presence of one catalytic nickel site on the enzyme. The M2+-treated enzymes could not be further activated by addition of NiCl2 as opposed to the untreated apoenzyme, whose activity was stimulated 50-100-fold to the level of holoenzyme upon addition of NiCl2. When placed under CO, the FE-S centers of the cobalt-treated enzyme became reduced over a 35-min time course, as opposed to the zinc- and iron-treated enzymes, which remained oxidized. We conclude that nickel, or an appropriate nickel analogue in the nickel site, mediates electron flow from CO to the Fe-S centers of CO dehydrogenase.