Semi-Automated Sensitivity Analysis to Assess Systematic Errors in Observational Data
- 1 July 2003
- journal article
- research article
- Published by Wolters Kluwer Health in Epidemiology
- Vol. 14 (4) , 451-458
- https://doi.org/10.1097/01.ede.0000071419.41011.cf
Abstract
Background Published epidemiologic research usually provides a quantitative assessment of random error for effect estimates, but no quantitative assessment of systematic error. Sensitivity analysis can provide such an assessment. Methods We describe a method to reconstruct epidemiologic data, accounting for biases, and to display the results of repeated reconstructions as an assessment of error. We illustrate with a study of the effect of less-than-definitive therapy on breast cancer mortality. Results We developed SAS code to reconstruct the data that would have been observed had a set of systematic errors been absent, and to convey the results. After 4,000 reconstructions of the example data, we obtained a median estimate of relative hazard equal to 1.5 with a 95% simulation interval of 0.8-2.8. The relative hazard obtained by conventional analysis equaled 2.0, with a 95% confidence interval of 1.2-3.4. Conclusions Our method of sensitivity analysis can be used to quantify the systematic error for an estimate of effect and to describe that error in figures, tables, or text. In the example, the sources of error biased the conventional relative hazard away from the null, and that error was not accurately communicated by the conventional confidence interval.Keywords
This publication has 22 references indexed in Scilit:
- Low P-Values or Narrow Confidence Intervals: Which Are More Durable?Epidemiology, 2001
- It’s Time to Rehabilitate the P-ValueEpidemiology, 2001
- The Value of PEpidemiology, 2001
- Selection of Controls in Case-Control StudiesAmerican Journal of Epidemiology, 1992
- Confidence intervals exclude nothing.American Journal of Public Health, 1987
- On the comparison of effects.American Journal of Public Health, 1987
- Beyond the confidence interval.American Journal of Public Health, 1987
- Statistical criteria in the interpretation of epidemiologic data.American Journal of Public Health, 1987
- Identifiability, Exchangeability, and Epidemiological ConfoundingInternational Journal of Epidemiology, 1986
- THE EFFECT OF MISCLASSIFICATION IN THE PRESENCE OF COVARIATESAmerican Journal of Epidemiology, 1980