Abstract
A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1 + 1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the nonrelativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.

This publication has 0 references indexed in Scilit: