Focal projections of cat auditory cortex to the pontine nuclei

Abstract
The pontine nuclei (PN) receive projections from the auditory cortex (AC) and they are a major source of mossy fibers to the cerebellum. However, they have not been studied in detail using sensitive neuroanatomical tracers, and whether all AC areas contribute to the corticopontine (CP) system is unknown. We characterized the projection patterns of 11 AC areas with WGA‐HRP. We also compared them with their corticothalamic and corticocollicular counterparts. A third objective was to analyze the structure of the CP axons and their terminals with BDA. Both tracers confirm that all AC areas projected to lateral, central, and medial ipsilateral pontine divisions. The strongest CP projections were from nontonotopic and polymodal association areas. Preterminal fibers formed single terminal fields having many boutons en passant as well as terminal endings, and there was a specific morphological pattern for each pontine target, irrespective of their areal origin. Thus, axons in the medial division had a simpler terminal architecture (type 1 terminal plexus); both the central and lateral pons received more complex endings (type 2 terminal plexus). Auditory CP topographical distribution resembled visual and somatosensory CP projections, which preserve retinotopy and somatotopy in the pons, respectively. However, the absence of pontine tonotopy suggests that the AC projection topography is unrelated to tonotopy. CP input to the medial and central pons coincides with the somatosensory and visual cortical inputs, respectively, and such overlap might subserve convergence in the cerebellum. In contrast, lateral pontine input may be exclusively auditory. J. Comp. Neurol. 497:959–980, 2006.