Abstract
This review is devoted to the effect of grain boundaries on the deformational and strength properties of poly-, micro-, and nanocrystalline materials (predominantly metals). The main experimental facts and mechanisms concerning the dislocation structure and mechanical behavior of these materials over wide ranges of temperatures and grain sizes are presented. The experimentally established regularities are analyzed theoretically in terms of equations of dislocation kinetics taking into account the properties of grain boundaries as barriers, sources, and sinks for dislocations and as places where dislocations annihilate. The origin of the Hall-Petch relations for the yield stress and the flow stress as functions of the grain size, as well as the deviations from these relations observed in nano- and microcrystalline materials, is discussed in detail in terms of the dislocation-kinetics approach. Embrittlement of micro- and nanocrystalline materials at low temperatures and superplasticity of these materials at elevated temperatures are also analyzed in terms of the dislocation-kinetics approach.