Wallman-Type Compactifications
- 1 June 1970
- journal article
- Published by JSTOR in Proceedings of the American Mathematical Society
- Vol. 25 (2) , 363-368
- https://doi.org/10.2307/2037221
Abstract
All spaces in this paper are Tychonoff. A Wallman base on a space is a normal separating ring of closed subsets of (see Steiner, Duke Math. J. 35 (1968), 269-276). Let be a compact space and <!-- MATH $\mathcal{L}$ --> a Wallman base on . For <!-- MATH $X \subset T$ --> , define <!-- MATH ${\mathcal{L}_X} = \{ A \cap X|A \in \mathcal{L}\}$ --> .
Keywords
This publication has 8 references indexed in Scilit:
- Normal bases and compactificationsMathematische Annalen, 1967
- Ordered sets and compact spacesColloquium Mathematicum, 1967
- On Wallman compactificationsFundamenta Mathematicae, 1967
- Wallman spaces and compactificationsFundamenta Mathematicae, 1967
- Compactifications and Semi-Normal SpacesAmerican Journal of Mathematics, 1964
- Rings of continuous functions. By Leonard Gillman and Meyer Jerison. Pp. 300. 66s. 1960. (D. van Nostrand, London)The Mathematical Gazette, 1962
- General Topology. By John L. Kekley pp. xiv, 298. 60s. 1£ (Macmillan)The Mathematical Gazette, 1957
- Lattices and Topological SpacesAnnals of Mathematics, 1938