Mechanism of DNA segregation in prokaryotes: Replicon pairing by parC of plasmid R1
Open Access
- 21 July 1998
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 95 (15) , 8550-8555
- https://doi.org/10.1073/pnas.95.15.8550
Abstract
Prokaryotic chromosomes and plasmids encode partitioning systems that are required for DNA segregation at cell division. The systems are thought to be functionally analogous to eukaryotic centromeres and to play a general role in DNA segregation. The parA system of plasmid R1 encodes two proteins ParM and ParR, and a cis-acting centromere-like site denoted parC. The ParR protein binds to parC in vivo and in vitro. The ParM protein is an ATPase that interacts with ParR specifically bound to parC. Using electron microscopy, we show here that parC mediates efficient pairing of plasmid molecules. The pairing requires binding of ParR to parC and is stimulated by the ParM ATPase. The ParM mediated stimulation of plasmid pairing is dependent on ATP hydrolysis by ParM. Using a ligation kinetics assay, we find that ParR stimulates ligation of parC-containing DNA fragments. The rate-of-ligation was increased by wild type ParM protein but not by mutant ParM protein deficient in the ATPase activity. Thus, two independent assays show that parC mediates pairing of plasmid molecules in vitro. These results are consistent with the proposal that replicon pairing is part of the mechanism of DNA segregation in prokaryotes.Keywords
This publication has 43 references indexed in Scilit:
- Illuminating the force: Bacterial mitosis?Trends in Microbiology, 1997
- The centromere‐like parC locus of plasmid R1 Molecular Microbiology, 1996
- Holding chromatids together to ensure they go their separate waysBioEssays, 1996
- Partition Functions of Mini-F Affect Plasmid DNA Topology inEscherichia coliJournal of Molecular Biology, 1995
- Partitioning of plasmid R1 The parA operon is autoregulated by parR and its transcription is highly stimulated by a downstream activating elementJournal of Molecular Biology, 1994
- Partitioning of plasmid R1 Ten direct repeats flanking the parA promoter constitute a centromere-like partition site parC, that expresses incompatibilityJournal of Molecular Biology, 1994
- Use of an Inducible Site-specific Recombinase to Probe the Structure of Protein-DNA Complexes Involved in F Plasmid Partition in Escherichia coliJournal of Molecular Biology, 1994
- Partitioning of plasmid R1Journal of Molecular Biology, 1986
- Partition of unit-copy miniplasmids to daughter cellsJournal of Molecular Biology, 1985
- Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectorsGene, 1985