The electrostatic persistence length of polymers beyond the OSF limit

Abstract
We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l e of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length κ-1 exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l e∝κ-2 by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.
All Related Versions

This publication has 0 references indexed in Scilit: