Multi-party entanglement in graph states
Abstract
Graph states are multi-particle entangled states that correspond to mathematical graphs, where the vertices of the graph take the role of quantum spin systems and edges represent Ising interactions. They are many-body spin states of distributed quantum systems that play a significant role in quantum error correction, multi-party quantum communication and quantum computation within the framework of the one-way quantum computer. We characterize and quantify the genuine multi-particle entanglement of such graph states in terms of the Schmidt measure, to which we provide upper and lower bounds in graph theoretical terms. Several examples and classes of graphs will be discussed, where these bounds coincide. These examples include trees, cluster states of different dimension, graphs that occur in quantum error correction, such as the concatenated [7,1,3]-CSS code, and a graph associated with the quantum Fourier transform in the one-way computer. For graphs up to 7 vertices we provide a complete characterization modulo local unitary transformations and graph isomorphies.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: