Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis.
Open Access
- 1 August 1989
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 109 (2) , 593-605
- https://doi.org/10.1083/jcb.109.2.593
Abstract
Human plasma gelsolin has been expressed in high yield and soluble form in Escherichia coli. The protein has nucleating and severing activities identical to those of plasma gelsolin and is fully calcium sensitive in its interactions with monomeric actin. A number of deletion mutants have been expressed to explore the function of the three actin binding sites. Their design is based on the sixfold segmental repeat in the protein sequence. (These sites are located in segment 1, segments 2-3, and segments 4-6). Two mutants, S1-3 and S4-6, are equivalent to the NH2- and COOH-terminal halves of the molecule obtained by limited proteolysis. S1-3 binds two actin monomers in the presence or absence of calcium, it severs and caps filaments but does not nucleate polymerization. S4-6 binds a single actin monomer but only in calcium. These observations confirm and extend current knowledge on the properties of the two halves of gelsolin. Two novel constructs have also been studied that provide a different pairwise juxtaposition of the three sites. S2-6, which lacks the high affinity site of segment 1 (equivalent to the 14,000-Mr proteolytic fragment) and S1,4-6, which lacks segments 2-3 (the actin filament binding domain previously identified using the 28,000-Mr proteolytic fragment). S2-6 binds two actin monomers in calcium and nucleates polymerization; it associates laterally with filaments in the presence or absence of calcium and has a weak calcium-dependent fragmenting activity. S1,4-6 also binds two actin monomers in calcium and one in EGTA, has weak severing activity but does not nucleate polymerization. A model is presented for the involvement of the three binding sites in the various activities of gelsolin.This publication has 47 references indexed in Scilit:
- Villin sequence and peptide map identify six homologous domains.Proceedings of the National Academy of Sciences, 1988
- Muscle is the major source of plasma gelsolin.Journal of Biological Chemistry, 1988
- Identification of a polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments.The Journal of cell biology, 1988
- Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization.Journal of Biological Chemistry, 1988
- Severin, gelsolin, and villin share a homologous sequence in regions presumed to contain F-actin severing domains.Journal of Biological Chemistry, 1988
- Association of deoxyribonuclease I with the pointed ends of actin filaments in human red blood cell membrane skeletons.Journal of Biological Chemistry, 1988
- The F-actin capping proteins of Physarum polycephalum: cap42(a) is very similar, if not identical, to fragmin and is structurally and functionally very homologous to gelsolin; cap42(b) is Physarum actin.The EMBO Journal, 1987
- Gelsolin: Calcium‐ and polyphosphoinositide‐regulated actin‐ modulating proteinBioEssays, 1987
- [29] Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coliPublished by Elsevier ,1987
- Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasminJournal of Cell Science, 1986