Effects of heterogeneity and cooperativity on the forms of binding curves for multivalent ligands

Abstract
An exploratory investigation is made of the binding behavior that is likely to be encountered with multivalent ligands under circumstances where a single intrinsic binding constant does not suffice to describe all acceptor-ligand interactions. Numerical simulations of theoretical binding behavior have established that current criteria for recognizing heterogeneity and cooperativity of acceptor sites on the basis of the deviation of the binding curve from rectangular hyperbolic form for univalent ligands also apply to the interpretation of the corresponding binding curves for multivalent ligands. However, for systems in which the source of the departure from equivalence and independence of binding sites resides in the ligand, these criteria are reversed. On the basis of these observations a case is then made for attributing results of an experimental binding study of the interaction between pyruvate kinase and muscle myofibrils to positive cooperativity of enzyme sites rather than to heterogeneity or negative cooperativity of the myofibrillar sites.