Directed self-avoiding walks on a randomly dilute lattice

Abstract
We consider a model of Directed Self-Avoiding Walks (DSAW) on a dilute lattice, using various approaches (Cayley Tree, weak-disorder expansion, Monte-Carlo generation of walks up to 2 000 steps). This simple model appears to contain the essential features of the controversial problem of self-avoiding walks in a random medium. It is shown in particular that with any amount of disorder the mean value for the number of DSAW is different from its most probable value

This publication has 4 references indexed in Scilit: