Boundary-layer theory for blast waves

Abstract
The necessity for developing a boundary-layer theory in the case of blast waves stems from the fact that inviscid flow solutions often yield physically unrealistic results. For example, in the classical problem of the so-called non-zero counterpressure explosion, one obtains infinite temperature and zero density in the centre at all times even after the shock front deteriorates into a sound wave. In reality, this does not occur, as a consequence, primarily, of heat transfer that modifies the structure of the flow field around the centre without drastically affecting the outer region. It is profitable, therefore, to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

This publication has 11 references indexed in Scilit: