Distribution of two distinct Ca2+ -ATPase-like proteins and their relationships to the agonist-sensitive calcium store in adrenal chromaff in cells

Abstract
Many cellular functions are regulated by activation of cell-surface receptors that mobilize calcium from internal stores sensitive to inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The nature of these internal calcium stores and their localization in cells is not clear and has been a subject of debate. It was originally suggested that the Ins(1,4,5)P3-sensitive store is the endoplasmic reticulum, but a new organelle, the calciosome, identified by its possession of the calcium-binding protein, calsequestrin, and a Ca2+-ATPase-like protein of relative molecular mass 100,000 (100K), has been described as a potential Ins(1,4,5)P3-sensitive calcium store. Direct evidence on whether the calciosome is the Ins(1,4,5)P3-sensitive store is lacking. Using monoclonal antibodies raised against the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum, we show that bovine adrenal chromaffin cells contain two Ca2+-ATPase-like proteins with distinct subcellular distributions. A 100K Ca2+-ATPase-like protein is diffusely distributed, whereas a 140K Ca2+-ATPase-like protein is restricted to a region in close proximity to the nucleus. In addition, Ins(1,4,5)P3-generating agonists result in a highly localized rise in cytosolic calcium concentration ([Ca2+]i) initiated in a region close to the nucleus, whereas caffeine results in a rise in [Ca2+]i throughout the cytoplasm. Our results indicate that chromaffin cells possess two calcium stores with distinct Ca2+-ATPases and that the organelle with the 100K Ca2+-ATPase is not the Ins(1,4,5)P3-sensitive store.