Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus-transformed 3T3 cells

Abstract
A hyaluronic acid binding fraction was purified from the supernatant media of both 3T3 and murine sarcoma virus (MSV) transformed 3T3 cultures by hyaluronate and immunoaffinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the hyalutonate affinity-purified fraction into three major protein bands of estimated molecular weight (Mr,e) 70K, 66K, and 56K which contained hyaluronate binding activity and which were termed hyaluronate binding proteins (HABP). Hyaluronate affinity chromatography combined with immunoaffinity chromatography, using antibody directed against the larger HABP, allowed a 20-fold purification of HABP. Fractions isolated from 3T3 supernatant medium also contained additional binding molecules in the molecular weight range of 20K. This material was present in vanishingly small amounts and was not detected with a silver stain or with [35 S]methionine label. The three protein species isolated by hyaluronate affinity chromatography (Mr,e 70K, 66K, and 56K) were related to one another since they shared antigenic determinants and exhibited similar pI values. In isocratic conditions, HABP occurred as aggregates of up to 580 kilodaltons. Their glycoprotein nature was indicated by their incorporation of 3H-sugars. Enzyme-linked immunoadsorbent assay showed they were antigenically distinct from other hyaluronate binding proteins such as fibronectin, cartilage link protein, and the hyaluronate binding region of chondroitin sulfate proteoglycan. The apparent dissociation constant of HABP for hyaluronate was approximately 10-8 M, and kinetic analyses showed these binding interactions was complex and of a positive cooperative nature. Tryptic peptide fingerprinting and immunological cross-reactivity suggested the HABP from the the virally transformed and the parent cell line sources were closely related. Nevertheless, structural differences were demonstrated by distinct pI values and unique peptide sequences. These results are discussed with regard both to the functional significance of hyaluronate-cell surface interactions in transformed as well as normal cells and to the relationship of HABP to other reported hyaluronate binding proteins.