Unsteady-State Permeate Flux of Crossflow Microfiltration: Effect of Particle Size Distribution

Abstract
A mathematical model based on a hydrodynamic theory and mass balance was developed for the prediction of the unsteady-state permeate flux in crossflow microfiltration under the influence of particle size distribution. Experiments were also conducted in a membrane filtration cell to verify this model. Spherical polystyrene latex particles of 0.303, 0.606, and 1.020 μm were used to make suspensions of various particle size distributions. The flow of the suspension in the channel of the filtration cell was controlled under the laminar flow region. It was found that the unsteady-state permeate flux increased as the mean particle size of the suspension was increased. Moreover, the model predicted satisfactorily the unsteady-state permeate flux under the effect of particle size distribution.