Abstract
We analyze the presuppositions leading to instabilities in theories of order higher than second. The type of fourth-order gravity which leads to an inflationary (quasi-de Sitter) period of cosmic evolution by inclusion of one curvature-squared term (i.e., the Starobinsky model) is used as an example. The corresponding Hamiltonian formulation (which is necessary for deducing the Wheeler-DeWitt equation) is found both in the Ostrogradski approach and in another form. As an example, a closed form solution of the Wheeler-DeWitt equation for a spatially flat Friedmann model and L=R2 is found. The method proposed by Simon to bring fourth order gravity to second order can be (if suitably generalized) applied to bring sixth-order gravity to second order.