Neuronal tissue polarization induced by repetitive transcranial magnetic stimulation?

Abstract
In a blinded cross-over design, 10 healthy controls received 900 monophasic and biphasic repetitive transcranial magnetic stimuli over the primary motor cortex. Stimulation frequency was 1 Hz, and stimulation intensity 90% of the individual resting motor threshold. Suprathreshold stimuli applied at 0.1 Hz before and after repetitive stimulation controlled for changes in corticospinal excitability. We found a lasting corticospinal inhibition that was significantly more pronounced after monophasic than after biphasic repetitive transcranial magnetic stimulation (motor evoked potential amplitude reduced by 35 +/- 20% vs 12 +/- 37%, mean+/- s.d.). We propose that the current flow in the coil plays a significant role in optimising after effects, and asymmetric current flow may be particularly efficient in building up tissue polarization.