Calcium-mediated cyclic AMP inhibition of Na-H exchange in small intestine

Abstract
8-Bromo cyclic AMP (cAMP) (10(-4) M) inhibits Na absorption in isolated chicken enterocytes as has been reported previously. Direct measurements of intracellular pH (pHi) using 5,6-carboxyfluorescein diacetate showed that both 8-bromo cAMP and the diuretic amiloride (10(-3) M) stimulated a persistent decrease in pHi of approximately 0.1 pH units, effects that were Na dependent and were not additive when cells were stimulated with both agents. These results suggest inhibition of an amiloride-sensitive Na/H exchange by cAMP. Direct measurements of intracellular Ca [Ca]i were also made using quin 2. 8-Bromo cAMP (10(-4) M) stimulated an immediate and persistent (greater than 10 min) increase in [Ca]i of approximately 20 nM, an effect that was not dependent on extracellular Ca. Pretreatment of cells with the specific calmodulin inhibitor calmidazolium (10(-7) M) and the intracellular Ca-buffering agent MAPTAM blocked cAMP's effects on pH and Na uptake, but did not interfere with amiloride's effects. An increase in [Ca]i stimulated by the Ca ionophore A23187 (10(-6) M) was sufficient by itself to decrease pHi and inhibit amiloride-sensitive Na influx in isolated enterocytes. We conclude that cAMP stimulates the release of endogenous Ca in isolated enterocytes. This increase in [Ca]i appears to be essential for inhibition of amiloride-sensitive Na-H exchange by this cyclic nucleotide.