Analysis of correlated binomial data in logistic-normal models

Abstract
Estimation in logistic-normal models for correlated and overdispersed binomial data is complicated by the numerical evaluation of often intractable likelihood functions. Penalized quasilikelihood (PQL) estimators of fixed effects and variance components are known to be seriously biased for binary data. A simple correction procedure has been proposed to improve the performance of the PQL estimators. The proposed method is illustrated by analyzing infectious disease data. Its performance is compared, by means of simulations, with that of the Bayes approach using the Gibbs sampler.