Donor-Acceptor Complexes in Copolymerization. III. Conjugated Diene-Acrylonitrile Copolymerization in the Presence of Metal Halides

Abstract
The copolymerization of isoprene or butadiene with acrylonitrile in the presence of zinc chloride or ethylaluminum sesquichloride, in the presence or absence of a free radical catalyst, at 30-70°C yields an equimolar, diene-acrylonitrile alternating copolymer containing more than 90% trans-1,4 unsaturation, irrespective of monomer charge. The copolymer results from the homopolymerization of a diene-acrylonitrile…metal halide transoid charge transfer complex. When ZnCl2 is the electron-accepting metal halide and the polymerization is carried out at temperatures of 50°C and higher or to high conversions, the equimolar copolymer is accompanied by a high acrylonitrile polymer, and in the presence of a radical catalyst, by a normal radical copolymer. In the presence of the organoaluminum halide and in the absence of a radical catalyst, the alternating copolymer is the only product, irrespective of monomer charge. However, in the presence of a radical catalyst and at high acrylonitrile monomer charges, e.g., D/AN = 10/90, the alternating copolymer is accompanied by a normal radical copolymer. The formation of equimolar, alternating copolymer at all monomer ratios and in the absence or presence of a radical catalyst indicates that the (D-AN…MX) charge transfer complex readily undergoes homopolymerization and does not copolymerize with free diene or acrylonitrile or with the AN-AN…MX complex.

This publication has 14 references indexed in Scilit: