Evolution Of Reproductive Effort in A Metapopulation With Local Extinctions And Ecological Succession

Abstract
Using a metapopulation model, we study how local extinctions, limited population life span, and local demographic disequilibrium affect the evolution of the reproductive effort in a species with overlapping generations but no senescence. We show that in a metapopulation with saturation of all sites and an infinite deme maximal life span (no succession), local extinctions simply constitute an additional source of extrinsic mortality. When either the hypothesis of an infinite deme maximal life span or the saturation hypothesis is relaxed, nontrivial predictions arise. in particular, we find interactions between the evolutionarily stable reproductive effort strategy and the demographic dynamics in the metapopulation. We predict that larger reproductive effort may be selected for in habitats of poorer productivity, contrary to what would be predicted in a single population. Also, we predict that higher dispersal rates should favor selection for lower reproductive efforts. However, metapopulation parameters that favor high dispersal rates also favor larger reproductive efforts. Conflicting selection pressures in the metapopulation also allow maintaining evolutionarily stable polymorphism between a low and high reproductive effort for particular trade‐offs between survival and fecundity.