Abstract
Generalization properties of support vector machines, orthogonal least squares and zero-order regularized orthogonal least squares algorithms are studied using simulation. For high signal-to-noise ratios (40 dB), mixed results are obtained, but for a low signal-to-noise ratio, the prediction performance of support vector machines is better than the orthogonal least squares algorithm in the examples considered. However, the latter can usually give a parsimonious model with very fast training and testing time. Two new algorithms are therefore proposed that combine the orthogonal least squares algorithm with support vector machines to give a parsimonious model with good prediction accuracy in the low signal-to-noise ratio case.