Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties

Abstract
We develop coarse-grained force fields for poly (vinyl alcohol) and poly (acrylic acid) oligomers. In both cases, one monomer is mapped onto a coarse-grained bead. The new force fields are designed to match structural properties such as radial distribution functions of various kinds derived by atomistic simulations of these polymers. The mapping is therefore constructed in a way to take into account as much atomistic information as possible. On the technical side, our approach consists of a simplex algorithm which is used to optimize automatically non-bonded parameters as well as bonded parameters. Besides their similar conformation (only the functional side group differs), poly (acrylic acid) was chosen to be in aqueous solution in contrast to a poly (vinyl alcohol) melt. For poly (vinyl alcohol) a non-optimized bond angle potential turns out to be sufficient in connection with a special, optimized non-bonded potential. No torsional potential has to be applied here. For poly (acrylic acid), we show that each peak of the radial distribution function is usually dominated by some specific model parameter(s). Optimization of the bond angle parameters is essential. The coarse-grained forcefield reproduces the radius of gyration of the atomistic model. As a first application, we use the force field to simulate longer chains and compare the hydrodynamic radius with experimental data.
All Related Versions

This publication has 0 references indexed in Scilit: