Bridging the gaps between cameras

Abstract
The paper investigates the unsupervised learning of a model of activity for a multi-camera surveillance network that can be created from a large set of observations. This enables the learning algorithm to establish links between camera views associated with an activity. The learning algorithm operates in a correspondence-free manner, exploiting the statistical consistency of the observation data. The derived model is used to automatically determine the topography of a network of cameras and to provide a means for tracking targets across the "blind" areas of the network. A theoretical justification and experimental validation of the methods are provided.

This publication has 9 references indexed in Scilit: