Rice Aldehyde Dehydrogenase7 Is Needed for Seed Maturation and Viability
Open Access
- 3 December 2008
- journal article
- research article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 149 (2) , 905-915
- https://doi.org/10.1104/pp.108.130716
Abstract
Aldehyde dehydrogenases (ALDHs) catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding carboxylic acids. Although the proteins have been studied from various organisms and at different growth stages, their roles in seed development have not been well elucidated. We obtained T-DNA insertional mutants in OsALDH7, which is remarkably inducible by oxidative and abiotic stresses. Interestingly, endosperms from the osaldh7 null mutants accumulated brown pigments during desiccation and storage. Extracts from the mutant seeds showed a maximum absorbance peak at 360 nm, the wavelength that melanoidin absorbs. Under UV light, those extracts also exhibited much stronger fluorescence than the wild type, suggesting that the pigments are melanoidin. These pigments started to accumulate in the late seed developmental stage, the time when OsALDH7 expression began to increase significantly. Purified OsALDH7 protein showed enzyme activities to malondialdehyde, acetaldehyde, and glyceraldehyde. These results suggest that OsALDH7 is involved in removing various aldehydes formed by oxidative stress during seed desiccation. The mutant seeds were more sensitive to our accelerated aging treatment and accumulated more malondialdehyde than the wild type. These data imply that OsALDH7 plays an important role in maintaining seed viability by detoxifying the aldehydes generated by lipid peroxidation.Keywords
This publication has 68 references indexed in Scilit:
- A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from dryingPlant Physiology and Biochemistry, 2007
- Discoloration in Raw and Processed Fruits and VegetablesCritical Reviews in Food Science and Nutrition, 2007
- Rice Immature Pollen 1 ( RIP1 ) is a Regulator of Late Pollen DevelopmentPlant and Cell Physiology, 2006
- Free glutamine as a major precursor of brown products and fluorophores in Maillard reaction systemsAmino Acids, 2006
- Lipofuscin-like fluorophores originated from malondialdehydeFree Radical Research, 2006
- Generation of a flanking sequence‐tag database for activation‐tagging lines in japonica riceThe Plant Journal, 2005
- Thermal Degradation Studies of Food MelanoidinsJournal of Agricultural and Food Chemistry, 2005
- Mitochondrial Aldehyde Dehydrogenase Activity Is Required for Male Fertility in MaizePlant Cell, 2001
- Homology between a Human Protein and a Protein of the Green Garden PeaGenomics, 1994
- A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue CulturesPhysiologia Plantarum, 1962