Physical model of axonemal splitting
- 1 January 1994
- journal article
- research article
- Published by Wiley in Cell Motility
- Vol. 27 (4) , 287-298
- https://doi.org/10.1002/cm.970270402
Abstract
A physical model developed to explain microtubule sliding patterns in the trypsintreated ciliary axoneme has been extended to investigate the generation of bending moments by microtubules sliding in an axoneme in which the dublets are anchored at one end. With sliding restricted, a bending moment is developed by the polarized shearing interaction between neighbouring doublets, effected by the activity of dynein arms on doublet N pushing N + 1 in a tipward ( + ) direction. In arrested axonemes in which arms on several contiguous doublets are active, the bending moment causes splitting of the 9 + 2 microtubule array into two or more sets of doublets. In the absence of special constraints, splitting depends only on breaking the circumferential interdoublet links most distorted by the bending moment. The analysis, which permits assignment of arm activity to specific microtubules in each of the observed patterns of splitting, indicates that the axoneme will split between doublet N and N + 1 if arms on doublet N are inactive and arms on either N + 1 or N−1 are active. To produce the observed major splits, dynein arms on the microtubules of roughly one-half of the axoneme are predicted to be active, in a manner consistent with the switch-point hypothesis of ciliary motion. Electron microscopic examination indicates that virtually every set of doublets in the split axonemes retains its cylindrical form. Maintenance of cylindrical symmetry can be ascribed to the mechanical properties of the unbroken links, which may resist both tensile and compressive stress, and to active dynein arms.Keywords
This publication has 17 references indexed in Scilit:
- Morphology of nexin links in relation to interdoublet sliding in the sperm flagellumCell Motility, 1993
- One-dimensional diffusion of microtubules bound to flagellar dyneinCell, 1989
- Splitting the ciliary axoneme: Implications for a “Switch‐Point” model of dynein arm activity in ciliary motionCell Motility, 1989
- The ciliary cycle during hyperpolarization‐induced activity: An analysis of axonemal functional parametersCell Motility, 1988
- The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails.The Journal of cell biology, 1986
- Dynein arm substructure and the orientation of arm-microtubule attachmentsJournal of Molecular Biology, 1984
- Organization of interdoublet links in tetrahymena ciliaCell Motility, 1983
- Formation of the outer dense fibers during spermiogenesis in the ratThe Anatomical Record, 1982
- Cilia with Defective Radial SpokesNew England Journal of Medicine, 1979
- Effect of vanadate on gill cilia: Switching mechanism in ciliary beatJournal of Supramolecular Structure, 1979