Response properties of isolated mouse olfactory receptor cells
- 1 January 2001
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 530 (1) , 113-122
- https://doi.org/10.1111/j.1469-7793.2001.0113m.x
Abstract
Response properties of isolated mouse olfactory receptor cells were investigated using the suction pipette technique. Cells were exposed to the odour cineole or to solutions of modified ionic content by rapidly changing the solution superfusing the cilia. All experiments were performed at 37°C. Mouse olfactory receptor cells displayed a steep dependence of action potential frequency on stimulus concentration, a 3-fold increase in stimulus concentration often saturating the firing frequency at 200-300 Hz. The receptor current increased more gradually with increasing cineole concentration and did not saturate within the 100-fold range of cineole concentrations applied. When stimulated for 30 s with a low odour concentration, cells responded with sporadic spike firing. Higher concentrations led to the generation of a large receptor current at the onset of stimulation which returned to baseline levels within a few seconds, accompanied during its rising phase by a short burst of action potentials. Thereafter an oscillating response pattern was observed during the remainder of the stimulus, consisting of repetitive increases in receptor current of around 1 s duration accompanied by short bursts of action potentials. Olfactory adaptation was studied by comparing the responses to two closely spaced odour stimuli. The response to the second odour stimulus recovered to 80% of its original magnitude when the cell was superfused with Ringer solution during the 5 s interval between odour exposures. In contrast, exposure to a choline-substituted low Na+ solution between odour stimuli had two effects. First, the receptor current response to the first odour stimulus did not terminate as quickly as in the presence of Na+, suggesting the presence of a Na+-Ca2+ exchanger. Second, the response to the second stimulus only recovered to 55% of its original magnitude, demonstrating the involvement of Na+-Ca2+ exchange in the recovery of sensitivity in mouse olfactory receptor cells following stimulation.Keywords
This publication has 54 references indexed in Scilit:
- Adaptation of the odour‐induced response in frog olfactory receptor cellsThe Journal of Physiology, 1999
- Phosphorylation and Inhibition of Olfactory Adenylyl Cyclase by CaM Kinase II in NeuronsNeuron, 1998
- Sodium/calcium exchanger in rat olfactory neuronsNeurochemistry International, 1997
- Visualizing an Olfactory Sensory MapCell, 1996
- General Anosmia Caused by a Targeted Disruption of the Mouse Olfactory Cyclic Nucleotide–Gated Cation ChannelNeuron, 1996
- Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channelsNeuron, 1995
- Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cellsNature, 1993
- Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cellsNature, 1993
- Properties of transient K+ currents and underlying single K+ channels in rat olfactory receptor neurons.The Journal of general physiology, 1991
- Studies of the Relation Between the Frog's Electro‐Olfactogram (EOG) and Single Unit Activity in the Olfactory BulbActa Physiologica Scandinavica, 1964