Gulf of Mexico Hypoxia, A.K.A. “The Dead Zone”
Top Cited Papers
- 1 November 2002
- journal article
- Published by Annual Reviews in Annual Review of Ecology and Systematics
- Vol. 33 (1) , 235-263
- https://doi.org/10.1146/annurev.ecolsys.33.010802.150513
Abstract
The second largest zone of coastal hypoxia (oxygen-depleted waters) in the world is found on the northern Gulf of Mexico continental shelf adjacent to the outflows of the Mississippi and Atchafalaya Rivers. The combination of high freshwater discharge, wind mixing, regional circulation, and summer warming controls the strength of stratification that goes through a well-defined seasonal cycle. The physical structure of the water column and high nutrient loads that enhance primary production lead to an annual formation of the hypoxic water mass that is dominant from spring through late summer. Paleoindicators in dated sediment cores indicate that hypoxic conditions likely began to appear around the turn of the last century and became more severe since the 1950s as the nitrate flux from the Mississippi River to the Gulf of Mexico tripled. Whereas increased nutrients enhance the production of some organisms, others are eliminated from water masses (they either emigrate from the area or die) where the oxygen level falls below 2 mg l−1 or lower for a prolonged period. A hypoxia-stressed benthos is typified by short-lived, smaller surface deposit-feeding polychaetes and the absence of marine invertebrates such as pericaridean crustaceans, bivalves, gastropods, and ophiuroids. The changes in benthic communities, along with the low dissolved oxygen, result in altered sediment structure and sediment biogeochemical cycles. Important fisheries are variably affected by increased or decreased food supplies, mortality, forced migration, reduction in suitable habitat, increased susceptibility to predation, and disruption of life cycles.Keywords
This publication has 98 references indexed in Scilit:
- Nitrogen in Aquatic EcosystemsAMBIO, 2002
- Our evolving conceptual model of the coastal eutrophication problemMarine Ecology Progress Series, 2001
- Nematode abundance at the oxygen minimum zone in the Arabian SeaDeep Sea Research Part II: Topical Studies in Oceanography, 2000
- Importance of suspended participates in riverine delivery of bioavailable nitrogen to coastal zonesGlobal Biogeochemical Cycles, 1998
- Effects of low oxygen waters on Chesapeake Bay zooplanktonLimnology and Oceanography, 1993
- Recent changes in the trophic structure of the Black SeaFisheries Oceanography, 1992
- A brief summary of hypoxia on the northern Gulf of Mexico continental shelf: 1985–1988Geological Society, London, Special Publications, 1991
- Near-shore hypoxia in the Chesapeake Bay: Patterns and relationships among physical factorsEstuarine, Coastal and Shelf Science, 1990
- Physical Environmental Factors Contributing to Recurring Hypoxia in the New York BightTransactions of the American Fisheries Society, 1988
- Sporadic Mass Shoreward Migrations of Demersal Fish and Crustaceans in Mobile Bay, AlabamaEcology, 1960