Evaluating iron‐impregnated paper strips for assessing available soil phosphorus

Abstract
Iron (Fe)‐impregnated filter paper strips (Pi) have been proposed as a method for measuring available soil phosphorus (P). A well‐defined Pi method has not yet been developed and Pi strips are often prepared with different filter papers and procedures. A study aimed at arriving at a consistent Pi method is thus needed. Four types of Pi strips, prepared with the two most widely used papers, Whatman No. 50 and 541, following a procedure that incorporates improvements both proposed in the literature and made in our laboratory, were evaluated for P extraction capacity and error. Two of the best strips, which are significantly different in P extraction capacity, along with the Mehlich 1 (0.05M HCl and 0.0125M H2SO4) and the Olsen method (0.5M NaHCO3, pH 8.5) were further evaluated in a greenhouse experiment involving eight soils planted with corn (Zea mays L.). Results indicated that strips prepared with both Whatman No. 50 and 541 were appropriate for P extractions as long as strips were washed with deionized water after treatment with ammonium hydroxide (NH4OH). At room temperatures the strips probably contain both hydrous Fe hydroxides and oxides in both crystalline and amorphous forms. Pi P was well correlated with Olsen P and P uptake in all soils, indicating that Pi is generally applicable in diverse soils. No obvious advantage was found for the Pi with respect to the Olsen method. Both the Pi and the Olsen method were better extractants with respect to the Mehlich 1, which was ineffective for extracting P in calcareous soils. Extractable P by Mehlich 1, Olsen, and Pi all correlated highly with accumulated plant available P estimated by eight sequential crops in the greenhouse. However, none of the methods could account for all the variation in plant P removal.