Lysophosphatidylcholine metabolism and lipoprotein secretion by cultured rat hepatocytes deficient in choline

Abstract
The metabolism of lysophosphatidylcholine was studied in cultured rat hepatocytes deficient in choline and methionine. Even though the cells were defective in phosphatidylcholine biosynthesis, the albumin-stimulated release of lysophosphatidylcholine (1.9 nmol/h per mg of cellulor protein) was similar to that in hepatocytes supplemented with choline. Albumin also stimulated (1.4-fold) the release of phosphatidylcholine from the deficient cells. The extra phosphatidylcholine and lysophosphatidylcholine in the medium were largely recovered in the albumin fraction (density > 1.18 g/ml), suggesting that albumin released these lipids from hepatocytes because of binding to this protein. The secretion of glycerophosphocholine was decreased by about 40% by the addition of albumin. When choline-deficient hepatocytes were supplemented with lysophosphatidylcholine, it was transported into the cells and mainly acylated to form phosphatidylcholine, which increased in mass by 30-35% in the first 4 h of incubation. Lysophosphatidylcholine was shown to be as effective as choline in restoring the secretion of very-low-density lipoproteins to normal amounts, as judged by the secretion of triacylglycerol, phosphatidylcholine and the apolipoproteins associated with very-low-density lipoproteins. Thus phosphatidylcholine synthesis via reacylation of lysophosphatidylcholine, via the CDP-choline pathway or via methylation of phosphatidylethanolamine, will satisfy the requirements for secretion of very-low-density lipoprotein from hepatocytes.

This publication has 25 references indexed in Scilit: