Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells.
Open Access
- 1 July 1990
- journal article
- research article
- Published by Cold Spring Harbor Laboratory in Genes & Development
- Vol. 4 (7) , 1158-1171
- https://doi.org/10.1101/gad.4.7.1158
Abstract
SF2, an activity necessary for 5' splice site cleavage and lariat formation during pre-mRNA splicing in vitro, has been purified to near homogeneity from HeLa cells. The purest fraction contains only two related polypeptides of 33 kD. This fraction is sufficient to complement an S100 fraction, which contains the remaining splicing factors, to splice several pre-mRNAs. The optimal amount of SF2 required for efficient splicing depends on the pre-mRNA substrate. SF2 is distinct from the hnRNP A1 and U1 snRNP a polypeptides, which are similar in size. Endogenous hnRNA copurifies with SF2, but this activity does not appear to have an essential RNA component. SF2 appear to be necessary for the assembly or stabilization of the earliest specific prespliceosome complex, although in the absence of other components, it can bind RNA in a nonspecific manner. SF2 copurifies with an activity that promotes the annealing of complementary RNAs. Thus, SF2 may promote specific RNA-RNA interactions between snRNAs and pre-mRNA, between complementary snRNA regions, and/or involving intramolecular pre-mRNA helices. Other purified proteins with RNA annealing activity cannot substitute for SF2 in the splicing reaction.Keywords
This publication has 76 references indexed in Scilit:
- Structures of human and rabbit .beta.-globin precursor messenger RNAs in solutionBiochemistry, 1989
- Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins.Genes & Development, 1988
- Spliceosome assembly in yeast.Genes & Development, 1987
- Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomesCell, 1987
- Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNACell, 1987
- A protein that specifically recognizes the 3′ splice site of mammalian pre-mRNA introns is associated with a small nuclear ribonucleoproteinCell, 1986
- A compensatory base change in U1 snRNA suppresses a 5′ splice site mutationCell, 1986
- Trans-activation of human immunodeficiency virus occurs via a bimodal mechanismCell, 1986
- A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnalytical Biochemistry, 1976
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970