Synthesis and release of erythroid colony- and burst-potentiating activities by purified populations of murine peritoneal macrophages
Open Access
- 1 April 1980
- journal article
- research article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 151 (4) , 839-852
- https://doi.org/10.1084/jem.151.4.839
Abstract
We investigated the effects of murine resident peritoneal macrophages on the in vitro proliferation of erythropoietin (Ep)-sensitive committed precursors colony-forming unit-erythroid (CFU-E) and burst-forming unit-erythroid (BFU-E) with a two-layer cloning system of methylcellulose and semisolid agar. The addition of increasing numbers of macrophages to the agar underlayer resulted in a progressive increase in the numbers of both CFU-E and BFU-E that proliferated in the presence of Ep. CFU-E, but not BFU-E, proliferated to form colonies in the absence Qf exogenously added Ep, and this proliferation was enhanced in a dose-dependent fashion by the presence of macrophages in the underlayer. The enhancing effects of a given number of macrophages and a given concentration of Ep were greater than the sum of the individual effects of macrophages and Ep alone. This erythropoietic syngerism was more evident with BFU-E because burst formation was not seen in the absence of exogenously added Ep. Macrophage underlayers stimulated three to five times the number of erythroid bursts seen with Ep alone. Cell-free agar underlayers or agar underlayers prepared with nonadherent peritoneal cells or unseparated cells from thymus, lymph node, or spleen failed to augment Ep- dependent erythroid colony formation. No enhancement of CFU-E or BFU-E was demonstrable after depletion ofadherent cells from peritoneal cell suspensions by passage over columns of Sephadex G-10. Analysis by sedimentation velocity of peritoneal cells confirmed that the cells responsible for elaborating the erythroid-enhancing activity were macrophages on the basis of morphologic, histochemical, and functional criteria. Serum- free media conditioned by macrophages in the absence of Ep contained the erythroid-enhancing activities, which indicated that Ep was not required for the elaboration of these diffusible substances. These studies indicate that although macrophages are not obligate for the growth of erythroid precursors, they serve as an important source of diffusible factors that reduce the in vitro requirement for Ep.This publication has 21 references indexed in Scilit:
- Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: Studies of three erythropoietic colony responses in cultureJournal of Cellular Physiology, 1976
- Study of haemopoietic microenvironment in vitroNature, 1976
- Separation of mouse spleen cells by passage through columns of sephadex G-10Journal of Immunological Methods, 1974
- Erythroid colony formation in cultures of mouse and human bone marrow: Analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose‐concanavalin AJournal of Cellular Physiology, 1974
- HEMATOPOIETIC COLONY FORMATION IN A MACRO-PHAGE LAYER PROVIDED BY INTRAPERITONEAL INSERTION OF CELLULOSE ACETATE MEMBRANETransplantation, 1973
- Enhancement of erythropoiesis by prostaglandins.1973
- Effects of Anti-inflammatory Drugs on Prostaglandin BiosynthesisNature New Biology, 1972
- Induction of Colonies of Hemoglobin-Synthesizing Cells by Erythropoietin In VitroProceedings of the National Academy of Sciences, 1971
- Cytochemical Identification of Monocytes and GranulocytesAmerican Journal of Clinical Pathology, 1971
- Separation of cells by velocity sedimentationJournal of Cellular Physiology, 1969