Abstract
The phenomenon of phase transitions in one-dimensional systems is discussed. Equilibrium systems are reviewed and some properties of an energy function which may allow phase transitions and phase ordering in one dimension are identified. We then give an overview of the one-dimensional phase transitions which we have been studied in nonequilibrium systems. A particularly simple model, the zero-range process, for which the steady state is know exactly as a product measure, is discussed in some detail. Generalisations of the model, for which a product measure still holds, are also discussed. We analyse in detail a condensation phase transition in the model and show how conditions under which it may occur may be related to the existence of an effective long-range energy function. Although the zero-range process is not well known within the physics community, several nonequilibrium models have been proposed that are examples of a zero-range process, or closely related to it, and we review these applications here.

This publication has 0 references indexed in Scilit: