Mouse homeo-genes within a subfamily, Hox-1.4, -2.6 and -5.1, display similar anteroposterior domains of expression in the embryo, but show stage- and tissue-dependent differences in their regulation
Open Access
- 1 September 1989
- journal article
- research article
- Published by The Company of Biologists in Development
- Vol. 107 (1) , 131-141
- https://doi.org/10.1242/dev.107.1.131
Abstract
By use of in situ hybridization experiments on mouse embryo sections, we compare the transcript patterns of three homeo-genes from the Hox-1.4 subfamily (Hox-1.4, -2.6 and -5.1). Genes within a subfamily are true homologues, present in the genome as a result of duplication of an ancestral homeo-gene cluster. We show that Hox-1.4, -2.6 and -5.1 are similar, although apparently not identical, in the limits of their transcript domains along the anteroposterior axis. Within the prevertebral column of the 12 1/2 day embryo, for example, the anterior boundary of transcripts for each of the three genes was most obvious at the junction of the first and second prevertebrae. Similarly, all three genes showed an anterior boundary of transcripts within the central nervous system that was located in the mid-myelencephalon of the hindbrain. Both in the prevertebral column and hindbrain, however, Hox-2.6 and Hox-5.1 transcripts extended slightly anterior to the anteriormost limits detected for Hox-1.4. In spite of close similarities in the positions of their transcript domains, Hox-1.4, -2.6 and -5.1 displayed striking stage- and tissue-dependent differences in the relative abundance of their transcripts. For example, Hox-5.1 transcripts were abundant within mesoderm and ectoderm of early stages (8 1/2 and 9 1/2 days), yet were detected only weakly in mesodermal components of the lung and stomach at 10 1/2 days, and were apparently absent from these tissues at 12 1/2 days. In contrast, Hox-1.4 and Hox-2.6 transcripts were relatively weakly detected at 8 1/2 and 9 1/2 days, but were abundant within the lung and stomach at 12 1/2 days. Our findings suggest, but do not prove, that genes within the Hox-1.4 subfamily might be coordinately regulated in their expression. We discuss the patterns of mouse homeo-gene expression now observed in terms of models originally devised for Drosophila. We also propose how our new findings may help to explain any selective advantage to the vertebrates of homeo-gene duplication to form subfamilies.This publication has 30 references indexed in Scilit:
- The murine and Drosophila homeobox gene complexes have common features of organization and expressionCell, 1989
- Hox and HOM: Homologous gene clusters in insects and vertebratesCell, 1989
- Expression of homeo box genes during mouse development: a review.Genes & Development, 1988
- Sequence analysis of the murine Hox-2.2, −2.3, and −2.4 homeo boxes: Evolutionary and structural comparisonsGenomics, 1987
- Expression of a homeo domain protein in noncontact-inhibited cultured cells and postmitotic neurons.Genes & Development, 1987
- Homeo Boxes in the Study of DevelopmentScience, 1987
- Homoeobox gene expression in mouse embryos varies with position by the primitive streak stageNature, 1986
- How is the mouse segmented?Trends in Genetics, 1985
- The elements of the bithorax complexCell, 1983
- A gene complex controlling segmentation in DrosophilaNature, 1978