Abstract
This paper introduces a theoretical framework for characterizing and classifying simple parallel algorithms and systems with many inputs, for example an array of photoreceptors. The polynomial representation (Taylor series development) of a large class of operators is introduced and its range of validity discussed. The problems involved in the polynomial approximation of systems are also briefly reviewed. Symmetry properties of the input-output map and their implications for the system structure (i.e. its kernels) are studied. Finally, the computational properties of polynomial mappings are characterized.

This publication has 30 references indexed in Scilit: