Abstract
A series of peptidyl diazomethanes and monofluoromethane with structures specific for calpain have been synthesized and tested for their ability to inhibit calpain activity in vivo, using human platelets as a model system. Calpain activity in vivo was determined by observing proteolysis of actin-binding protein and talin, two known substrates of calpain. Very potent inhibitors, which emerged from this study, were used to investigate the role of calpain in some platelet response processes. Our results show that calpain-mediated proteolysis in platelets is not an obligatory event leading to change of cell shape, adhesion to glass and spreading, aggregation and 5-hydroxytryptamine release. Two of the inhibitors were iodinated with 125I and used to radiolabel the enzyme in vivo. To our knowledge, this work also represents the first report describing the affinity labelling of calpain in human platelets using irreversible radioactive inhibitors.