Perturbation theory for infinite-component wave equations
- 1 July 1977
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 10 (7) , 1243-1247
- https://doi.org/10.1088/0305-4470/10/7/021
Abstract
A new covariant perturbation theory for infinite-component wave equations is constructed which is analogous to the Epstein-Waller and Lewis-Dalgarno (1955) method of atomic physics. Instead of infinite sums over discrete and continuous states the matrix elements involve Lie algebra or group elements and can be evaluated in closed form.Keywords
This publication has 6 references indexed in Scilit:
- Interpretation of space-like solutions of infinite-component wave equations and Grodsky-Streater 'No-Go' theoremJournal of Physics A: General Physics, 1977
- Electromagnetic polarizabilities of nucleonsPhysical Review D, 1976
- Some Unusual Applications of Lie Algebra Representations in Quantum TheorySIAM Journal on Applied Mathematics, 1973
- The exact calculation of long-range forces between atoms by perturbation theoryProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1955
- The Stark Effect from the Point of View of Schroedinger's Quantum TheoryPhysical Review B, 1926
- Der Starkeffekt zweiter Ordnung bei Wasserstoff und die Rydbergkorrektion der Spektra von He und Li+The European Physical Journal A, 1926