Quantitative evaluation of DNA binding data for risk estimation and for classification of direct and indirect carcinogens
- 1 October 1986
- journal article
- research article
- Published by Springer Nature in Zeitschrift für Krebsforschung und Klinische Onkologie
- Vol. 112 (2) , 85-91
- https://doi.org/10.1007/bf00404387
Abstract
Investigation of covalent DNA binding in vivo provided evidence for whether a test substance can be activated to metabolites able to reach and react with DNA in an intact organism. For a comparison of DNA binding potencies of various compounds tested under different conditions, a normalization of the DNA lesion with respect to the dose is useful. A covalent binding index, CBI=(μmol chemical bound per mol DNA nucleotide)/(mmol chemical administered per kg body weight) can be determined for each compound. Whether covalent DNA binding results in tumor formation is dependent upon additional factors specific to the cell type. Thus far, all compounds which bind covalently to liver DNA in vivo have also proven to be carcinogenic in a long-term study, although the liver was not necessarily the target organ for tumor growth. With appropriate techniques, DNA binding can be determined in a dose range which may be many orders of magnitude below the dose levels required for significant tumor induction in a long-term bioassay. Rat liver DNA binding was proportional to the dose of aflatoxin B1 after oral administration of a dose between 100 μg/kg and 1 ng/kg. The lowest dose was in the range of general human daily exposures. Demonstration of a lack of liver DNA binding (CBI<0.1) in vivo for a carcinogenic, nonmutagenic compound is a strong indication for an indirect mechanism of carcinogenic action. Carcinogens of this class do not directly produce a change in gene structure or function but disturb a critical biochemical control mechanism, such as protection from oxygen radicals, control of cell division, etc. Ultimately, genetic changes are produced indirectly or accumulate from endogenous genotoxic agents. The question of why compounds which act via indirect mechanisms are more likely to exhibit a nonlinear range in the dose-response curve as opposed to the directly genotoxic agents or processes is discussed.This publication has 31 references indexed in Scilit:
- The Covalent Binding of Bromobenzene with Nucleic AcidsToxicologic Pathology, 1985
- Binding of carbon tetrachloride metabolites to rat hepatic mitochondrial DNAToxicology Letters, 1984
- Investigation of the potential for binding of di(2-ethylhexyl) phthalate (DEHP) and di(2-ethylhexyl) adipate (DEHA) to liver DNA in vivoToxicology and Applied Pharmacology, 1984
- Hepatic macromolecular covalent binding of the hepatocarcinogen 2,6-dinitrotoluene and its 2,4-isomer in vivo: modulation by the sulfotransferase inhibitors pentachlorophenol and 2,6-dichloro-4-nitrophenolCarcinogenesis: Integrative Cancer Research, 1984
- 32P-Post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. I. Adult female CD-1 miceCarcinogenesis: Integrative Cancer Research, 1984
- In vivo interactions of acrylonitrile with macromolecules in ratsChemico-Biological Interactions, 1983
- The relevance of covalent binding to mouse liver DNA to the carcinogenic action of hexachlorocyclohexane isomersCarcinogenesis: Integrative Cancer Research, 1983
- Evidence for DNA adducts in rat liver after adminstration of N-nitrosopyrrolidineBiochemical and Biophysical Research Communications, 1982
- In vivo binding of the flame retardantsTris(2,3-dibromopropyl) phosphate andTris(1,3-dichloro-2-propyl) phosphate to macromolecules of mouse liver, kidney and muscleBulletin of Environmental Contamination and Toxicology, 1980
- Saccharin does not bind to DNA of liver or bladder in the ratChemico-Biological Interactions, 1977