On p-adic L-functions and cyclotomic fields. II
- 1 August 1977
- journal article
- research article
- Published by Cambridge University Press (CUP) in Nagoya Mathematical Journal
- Vol. 67, 139-158
- https://doi.org/10.1017/s0027763000022583
Abstract
Let p be a prime. If one adjoins to Q all pn-th roots of unity for n = 1,2,3, …, then the resulting field will contain a unique subfield Q∞ such that Q∞ is a Galois extension of Q with Gal (Q∞/Q) Zp, the additive group of p-adic integers. We will denote Gal (Q∞/Q) by Γ. In a previous paper [6], we discussed a conjecture relating p-adic L-functions to certain arithmetically defined representation spaces for Γ. Now by using some results of Iwasawa, one can reformulate that conjecture in terms of certain other representation spaces for Γ. This new conjecture, which we believe may be more susceptible to generalization, will be stated below.Keywords
This publication has 7 references indexed in Scilit:
- Iwasawa invariants of abelian number fieldsMathematische Annalen, 1978
- Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisésAnnales de l'institut Fourier, 1977
- On the Iwasawa Invariants of Totally Real Number FieldsAmerican Journal of Mathematics, 1976
- On p-adic L-functions and cyclotomic fieldsNagoya Mathematical Journal, 1975
- On l-Adic Zeta FunctionsAnnals of Mathematics, 1973
- On Z l -Extensions of Algebraic Number FieldsAnnals of Mathematics, 1973
- On the units of algebraic number fieldsMathematika, 1967