Multiple drug hemodynamic control by means of a supervisory-fuzzy rule-based adaptive control system: validation on a model
- 1 April 1995
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Biomedical Engineering
- Vol. 42 (4) , 371-385
- https://doi.org/10.1109/10.376130
Abstract
A control device that uses an expert system approach for a two input-two output system has been developed and evaluated using a mathematical model of the hemodynamic response of a dog. The two inputs are the infusion rates of two drugs: sodium nitroprusside (SNP) and dopamine (DPM). The two controlled variables are the mean arterial pressure and the cardiac output. The control structure is dual mode, i.e., it has two levels: a critical conditions (coarse) control mode and a noncritical conditions (fine) control mode. The system switches from one to the other when threshold conditions are met. Different "controller parameters sets"-including the values for the threshold conditions-can be given to the system which will lead to different controller outputs. Both control modes are rule-based, and supervisory capabilities are added to ensure adequate drug delivery. The noncritical control mode is a fuzzy logic controller. The system includes heuristic features typically considered by anesthesiologists, like waiting periods and the observance of a "forbidden dosage range" for DPM infusion when used as an inotrope. An adaptation algorithm copes with the wide range of sensitivities to SNP found among different individuals, as well as the time varying sensitivity frequently observed in a single patient. The control device is eventually tested on a nonlinear model, designed to mimic the conditions of congestive heart failure in a dog. The test runs show a highest overshoot of 3 mmHg with nominal SNP sensitivity. When tested with different simulated SNP sensitivities, the controller adaptation produces a faster response to lower sensitivities, and reduced oscillations to higher sensitivities. The simulations seem to show that the system is able to drive and adequately keep the two hemodynamic variables within prescribed limits.Keywords
This publication has 13 references indexed in Scilit:
- A hybrid adaptive approach for drug delivery systemsPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Open-loop Control Of Therapeutic Drug Delivery With Fuzzy LogicPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Fuzzy control of mean arterial pressure in postsurgical patients with sodium nitroprusside infusionIEEE Transactions on Biomedical Engineering, 1992
- Twenty-five years of fuzzy sets and systems: A tribute to Professor Lotfi A. ZadehFuzzy Sets and Systems, 1991
- Modeling the hemodynamic response to dopamine in acute heat failureIEEE Transactions on Biomedical Engineering, 1991
- Self-organising fuzzy logic control and application to muscle relaxant anaesthesiaIEE Proceedings D Control Theory and Applications, 1991
- Fuzzy logic in control systems: fuzzy logic controller. IIEEE Transactions on Systems, Man, and Cybernetics, 1990
- EXPERT SYSTEM FOR ASSESSMENT AND CONTROL OF INTERNATIONAL ANESTHESIA USING VITAL SIGNSAnesthesiology, 1987
- Analysis of the Multiple Effects of Vasoactive and Positive Inotropic Agents on Cardiovascular System VariablesPublished by Springer Nature ,1982
- Outline of a New Approach to the Analysis of Complex Systems and Decision ProcessesIEEE Transactions on Systems, Man, and Cybernetics, 1973