The Mammalian Protein (rbet1) Homologous to Yeast Bet1p Is Primarily Associated with the Pre-Golgi Intermediate Compartment and Is Involved in Vesicular Transport from the Endoplasmic Reticulum to the Golgi Apparatus
Open Access
- 1 December 1997
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 139 (5) , 1157-1168
- https://doi.org/10.1083/jcb.139.5.1157
Abstract
Yeast Bet1p participates in vesicular transport from the endoplasmic reticulum to the Golgi apparatus and functions as a soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) associated with ER-derived vesicles. A mammalian protein (rbet1) homologous to Bet1p was recently identified, and it was concluded that rbet1 is associated with the Golgi apparatus based on the subcellular localization of transiently expressed epitope-tagged rbet1. In the present study using rabbit antibodies raised against the cytoplasmic domain of rbet1, we found that the majority of rbet1 is not associated with the Golgi apparatus as marked by the Golgi mannosidase II in normal rat kidney cells. Rather, rbet1 is predominantly associated with vesicular spotty structures that concentrate in the peri-Golgi region but are also present throughout the cytoplasm. These structures colocalize with the KDEL receptor and ERGIC-53, which are known to be enriched in the intermediate compartment. When the Golgi apparatus is fragmented by nocodazole treatment, a significant portion of rbet1 is not colocalized with structures marked by Golgi mannosidase II or the KDEL receptor. Association of rbet1 in cytoplasmic spotty structures is apparently not altered by preincubation of cells at 15°C. However, upon warming up from 15 to 37°C, rbet1 concentrates into the peri-Golgi region. Furthermore, rbet1 colocalizes with vesicular stomatitis virus G-protein en route from the ER to the Golgi. Antibodies against rbet1 inhibit in vitro transport of G-protein from the ER to the Golgi apparatus in a dose-dependent manner. This inhibition can be neutralized by preincubation of antibodies with recombinant rbet1. EGTA is known to inhibit ER-Golgi transport at a stage after vesicle docking but before the actual fusion event. Antibodies against rbet1 inhibit ER-Golgi transport only when they are added before the EGTA-sensitive stage. These results suggest that rbet1 may be involved in the docking process of ER- derived vesicles with the cis-Golgi membrane.Keywords
This publication has 74 references indexed in Scilit:
- Protein Sorting by Transport VesiclesScience, 1996
- Mechanisms of intracellular protein transportNature, 1994
- Rab1 and Ca2+ are required for the fusion of carrier vesicles mediating endoplasmic reticulum to Golgi transport.The Journal of cell biology, 1994
- Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulumCell, 1994
- Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport stepThe Journal of cell biology, 1994
- SNAP receptors implicated in vesicle targeting and fusionNature, 1993
- SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeastPublished by Elsevier ,1990
- Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus.The Journal of cell biology, 1988
- Semi-intact cells permeable to macromolecules: Use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complexCell, 1987
- Intracellular Aspects of the Process of Protein SynthesisScience, 1975